

Ακραία Συμβάντα σε Ροές Ρευστών και Κύματα

Θεμιστοκλής Σαψής

Καθηγητής Μηχανολογίας και Ωκεάνιας Μηχανικής Massachusetts Institute of Technology

Extreme events and why ML?

Examples and general characteristics

- Limited predictability
- Intrinsic uncertainty
- Complex dynamics
- High dimensionality
- Rare events
- Extreme impact

Challenges

Not enough data

Not enough <u>useful</u> data

Challenges in Modeling and Design of Offshore Facilities and Structures

- Design of <u>economical</u> floating or submerged structures that can survive <u>harsh open sea storms</u>
- Modeling of severe offshore sea environments: nonlinear waves, strong current, winds, ...
- Modeling of nonlinear sea loads and sea-keeping responses of ocean structures in storms
- Optimal sensor placement for structural health monitoring
- Characterize operational envelope
- Need to reduce computational time

Cargo ship in extreme waves

offshore platforms

Fatigue characterization

Active learning

Initial data

Probabilistic regression

Uncertainty Quantification

New experiment

Selection of new input

Optimization

$$\min_{x} y(x)$$

 $x_{N+1} = x^*$ $y_{N+1} = F(x^*)$

Extreme events quantification with very few experiments/simulations

JONSWAP spectral density

$$S(f) = \frac{\alpha g^2}{(2\pi)^4 f^5} \exp\left[-\frac{5}{4} \left(\frac{f_p}{f}\right)^2\right] \cdot \gamma^{\exp\left[\frac{-(f - f_p)^2}{2\delta^2 f_p^2}\right]}$$

2D parametrization of waves

Probability density function of wave parameters

iteration 16

0.2

0.1

pdf of structural moments with 16 simulations

CFD experiment

Output pdf acquisition function

$$\min_{x^*} \int \left| \log p_{\bar{y}_N + \sigma_N}(s; x^*) - \log p_{\bar{y}_N}(s) \right| ds$$

Optimal Experimental Design (Active learning) in other areas

Optimally induce cell state change in human cells

An optimally designed set of experiments leads to the discovery of a causal network for cellular reprogramming.

Zhang et al., ArXiv, 2022

Optimal experimental design for material and devices

Optimization of organic PV

Cao et al., ACS Nano, 2019

Intelligent towing tank

Fan et al., Science Robotics, 2019

Monitoring & Prediction of Nonlinear Geophysical Systems

inherently multi-scale and uncertain

real time measurements are

simulations are expensive

Finite-Volume Coastal Model (FVCOM)

Real time estimation of 3D temperature field in Massachusetts Bay

Extrapolation of satellite data using GPR and merging with buoy data using MF-GP

Prediction of vertical PCA coefficients using nonlocal TCN

Real-time estimation of 3D temperature and its uncertainty

Creating extreme event catalogues from coarse GCM

- → Weather climate disasters cost: \$152B (NOAA)
- → Critical for policy makers and insurance industry
- → Quantifying probability of extremes is expensive
- → Global circulation models in 100km resolution (not very accurate) cost \$2m for 100k yrs catalogues
- → Industry needs resolutions closer to 2-3km
- → Cost increases faster than 1/res^3
- → AI to represent smaller scale dynamics

Coarse GCM

(available for thousands of years)
State-of-the-Art reanalysis

(available for 40-50 years)

Statistical Downscaling to High-Resolution Product

Al for increasing resolution in coarse scale climate models

Wavelet decomposition into multiple scales

Use ML to Parameterize Fine Scales as Functions of Coarse Scales

Thank you!