



Scientific-based Exposure and risk Assessment of radiofrequency and mm-Wave systems from children to elderly (5G and Beyond)

Theodoros Samaras Aristotle University of Thessaloniki

theosama@auth.gr



This project has received funding from the Horizon Europe Research and Innovation programme under Grant Agreement No 101057622



#### Exposure to electromagnetic fields (EMF) and health

TOPIC ID: HORIZON-HLTH-2021-ENVHLTH-02-01

Grant



# Consortium

- Aristotle University of Thessaloniki (AUTH)
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)
- Schmid & Partner Engineering AG (SPEAG)
- Foundation for Research on Information Technologies in Society (IT'IS)
- International Agency for Research on Cancer (IARC)
- International University of Applied Sciences (IU)
- Institute of Non-Ionizing Radiation (INIS)
- Greek Atomic Energy Commission (EEAE)
- Centre Hospitalier Universitaire Vaudois (CHUV)
- French Alternative Energies and Atomic Energy Commission (CEA)
- Interuniversity Microelectronic Center (IMEC)
- Institute Mines-Telecom (TP-IPP)
- Federal Office for Radiation Protection (BfS)
- National Frequency Agency (ANFR)
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)



# Collaborations

| Programme                                                                                                                              | Funding    | Partners             |
|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|
| Research on possible health effects related to mobile telephones and base stations – in vitro, animal, human studies (PERFORM A, B, C) | EU FP5     | P2, P4, P15          |
| Risk Evaluation of Potential Environmental Hazards From Low-Energy EMF<br>Exposure Using Sensitive In Vitro Methods (REFLEX)           | EU FP5     | P4, P15              |
| Potential adverse effects of gsm cellular phones on hearing (GUARD)                                                                    | EU FP5     | P2, P4               |
| Exposure at UMTS electromagnetic fields: study on potential adverse effects on hearing (EMF-Near)                                      | EU SANCO   | P2, P4               |
| Effects of the Exposure to EMF (EMF-NET)                                                                                               | EU FP6     | P1, P4, P5           |
| MobiKids                                                                                                                               | EU FP7     | P12                  |
| Generalised EMF Research Using Novel Methods (GERONIMO)                                                                                | EU FP7     | P4, P11, P10, P12    |
| Sound Exposure Risk Assessment of Wireless Network Devices (SEAWIND)                                                                   | EU FP7     | P1, P4, P11, P3, P15 |
| Advanced Research on Interaction Mechanisms of EM Exposures with<br>Organisms for Risk Assessment (ARIMMORA)                           | EU FP7     | P4, P3, P5, P15      |
| Low EMF Exposure Future Networks (LEXNET)                                                                                              | EU FP7     | P10, P12, P11,       |
| SARSYS, SARSYS BWP, BASEXPO, WEMS                                                                                                      | EU EUREKA  | P1, P4, P11, P12     |
| Le programme national de recherche Environnement-Santé-Travail (PNR EST)                                                               | ANSES (FR) | P12, P10, P5, P14    |





## **Knowledge Gaps**

- Exposures from Cellular 5G vs. 2G–4G Networks
- Exposures from New 5G Local Networks in Workplaces
- Exposure Monitoring from 5G MaMIMO Base Stations
- Exposure Assessment of End User Devices
- Macro and Microdosimetry in the Human Skin
- FR2 Health Risk Studies Skin Cancer & Other Skin Disease Modulation
- Citizens' Perceived Exposure

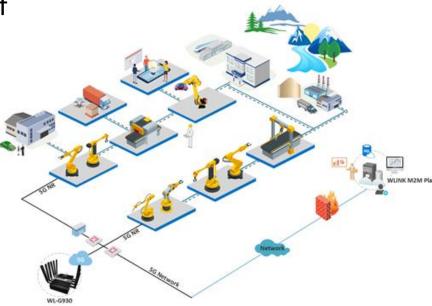


## Gap #1: Exposures from Cellular 5G vs. 2G–4G Networks

- New applications enabled by 5G (virtual reality, mobile big data, autonomous support, etc.)
- Increased number of mobile devices
- Change in the usage pattern of mobile devices
- Denser network of base transceiver stations (FR2)
- MaMIMO

These patterns of usage must be quantified and forecasted for children, adolescents, adults, workers and elderly persons for each exposure scenario to enable appropriate risk assessment and communication.



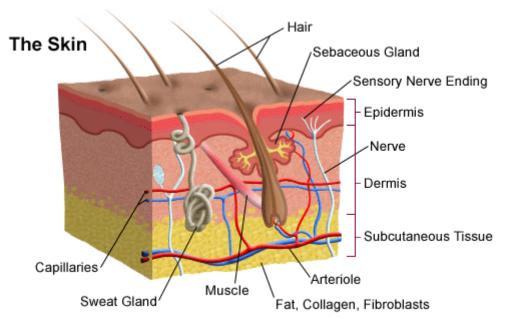





## Gap #2: Exposures from New 5G Local Networks in Workplaces

- Both FR1 and FR2 frequencies ranges within industrial environments (Industrial IoT, IIoT, distributed actuator networks, 'Factory of the Future', Industry 4.0)
- Absence of a model for highly modular environments
- Other workplaces (office workers, 'Smart Buildings')

It is necessary to describe the various wireless systems, especially in FR1, make measurements, create a parametric model for calculating EMF in the industrial environment, validate the model and extent it to FR2.



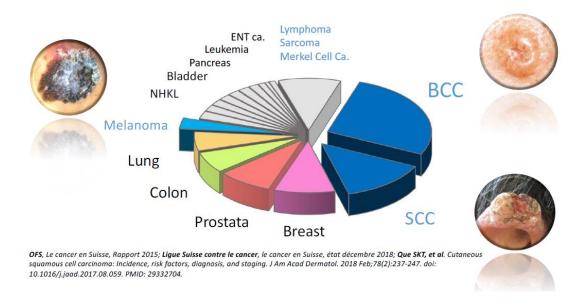



## Gap #5: Macro and Microdosimetry in the Human Skin

- Microstructures in the skin and their role in FR2
- Complicated structure of the skin and arrangement of the microstructures
- Problematic dielectric properties for various materials
- Absence of human models that reflect health condition and age
- Absence of murine skin models

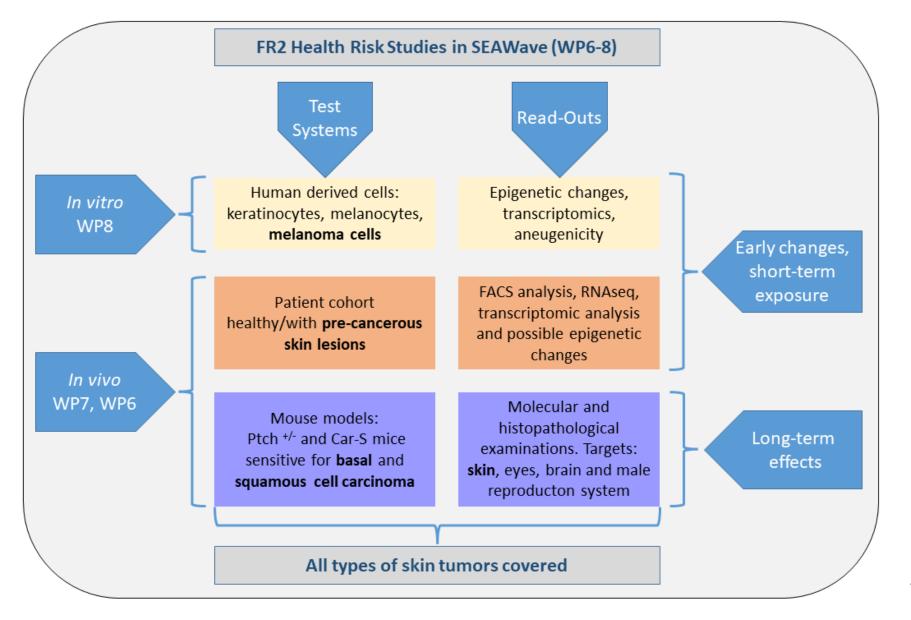
Create human models for statistical dosimetry and calculate its uncertainty though sensitivity analysis.





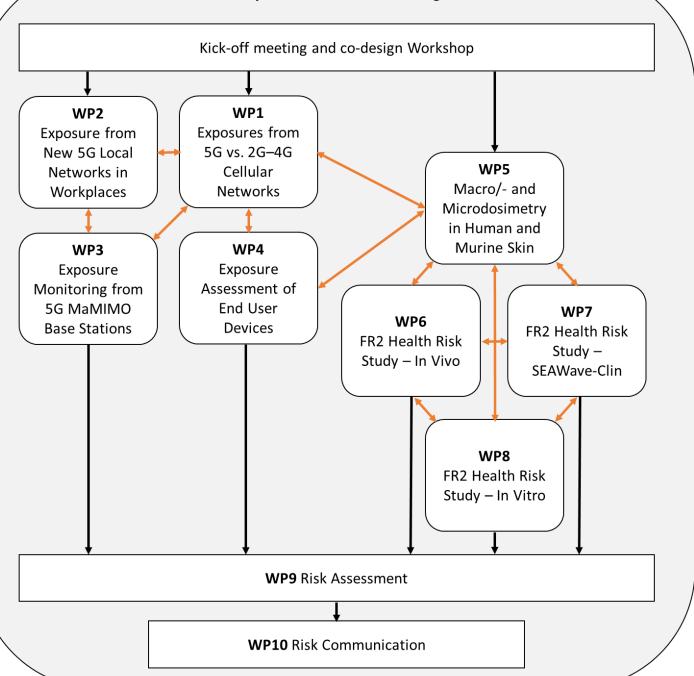

### Gap #6: FR2 Health Risk Studies – Skin Cancer & Other Skin Disease Modulation

- Skin is the main target of 5G FR2.
- Scarce information about skin cancer/skin diseases from millimetre waves radiation


Study evidence for all lines of evidence (in vitro, animals, humans).

Official provider of ... most cancers






#### Gap #6: FR2 Health Risk Studies – Skin Cancer & Other Skin Disease Modulation





WP11 Project and Consortium Management



#### Profile

- Duration: 36 months
- Budget: 9'842'331 €
- Amount requested: 7'317'777 €
- Work effort: 851.5 PM
- External Advisory Board:
  - $\rightarrow$  Clemens Dasenbrock (DE)
  - $\rightarrow$  Ron Melnick (US)
  - $\rightarrow$  Marvin Ziskin<sup>+</sup> (US)





## **TARGET GROUPS**

- > Citizens: Users of mobile devices and the whole population (EMF is ubiquitous)
- **European Commission services:** DG CNECT, DG EMPL, DG SANTE
- Public authorities worldwide (Health/ Environmental/Radiation Protection Agencies, etc.)
- Manufacturing industry: 'Smart Factories' (Industry 4.0)
- > Telecommunications industry: Manufacturers of mobile equipment, network operators
- Standardization organizations: CEN, IEC, IEEE



#### **EXPECTED RESULTS**

- New measurement standards for compliance assessment of base stations (environmental EMF) and user devices (personal exposure).
- IARC-like evaluation on carcinogenicity of 5G (FR1 and FR2).
- Novel communication tools, based on gamification, for public authorities to communicate EMF exposure and health risks to the citizens.

#### **IMPACTS**

- Market Authorization: Scientifically sound method for equipment authorisation provides certainty for manufacturers and consumers.
- Economic: Accelerated launch of FR2 if the results demonstrate no potential risk posed by 5G; this will positively impact all sectors of the European economy and ensures its competitiveness, the value of which may exceed trillions of Euros.
- Societal: Important input for science-based communication, increased trust in science-based policy decisions; paradigm of new tools for public authorities to communicate research results on controversial environmental issues (like EMF).



# SEAWavers at work! Zurich, 30 January 2023



seawave-project.eu